Singular Integral Equations with Shifts
نویسندگان
چکیده
منابع مشابه
Direct methods for solving singular integral equations with shifts in the unit circle
The computation schemes of spline-collocation methods for solving singular integral equations. A theoretical foundation of these two methods is obtained in space L2. In the present paper we give theoreticaly justification of the numerical schemes of spline-collocation method for solving the singular integral equations (SIE) of the following form
متن کاملSolving singular integral equations by using orthogonal polynomials
In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...
متن کاملAn effective method for approximating the solution of singular integral equations with Cauchy kernel type
In present paper, a numerical approach for solving Cauchy type singular integral equations is discussed. Lagrange interpolation with Gauss Legendre quadrature nodes and Taylor series expansion are utilized to reduce the computation of integral equations into some algebraic equations. Finally, five examples with exact solution are given to show efficiency and applicability of the method. Also, w...
متن کاملCAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS
In this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. Themethod is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis.This approach utilizes the non-uniform Gauss-Legendre quadrature rule for ...
متن کاملSolutions for Singular Volterra Integral Equations
0 gi(t, s)[Pi(s, u1(s), u2(s), · · · , un(s)) + Qi(s, u1(s), u2(s), · · · , un(s))]ds, t ∈ [0, T ], 1 ≤ i ≤ n where T > 0 is fixed and the nonlinearities Pi(t, u1, u2, · · · , un) can be singular at t = 0 and uj = 0 where j ∈ {1, 2, · · · , n}. Criteria are offered for the existence of fixed-sign solutions (u∗1, u ∗ 2, · · · , u ∗ n) to the system of Volterra integral equations, i.e., θiu ∗ i (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indiana University Mathematics Journal
سال: 1968
ISSN: 0022-2518
DOI: 10.1512/iumj.1969.18.18040